
PAD-AUG0 005 INTERMETRICS INC CAMORIOg(MA PF/B 9/2ADA INTEGRATED ENVIRONMENT I COMPUTER PRORAM DEVELOPMENT SPECI--ETC(U)DEC 8l F30602-6-B0.291UNCLASSI RADC-TR-aj3 58gv"jj.

I Io fllfflllfmfffllff'Ermmolo

1362

-W

MICROCOPY RESOLUTION TEST CHART

NATION4AL BUREAU OF STAI4DARDS 1963-Aj

q -

PHOTOGRAPH THIS SHEET

LEVEL VVfRY

DITRBUINSTATEMEI'INT-

DISRIUTION STAT"EMENT
AcC'EMION FOR o

* NTIS GRAfil

~DTIC

,L L.K STAwin

•r v D

DOUSTIFUATIO N /

sr AVAIL AND/OR SPECIAL DATE ACCESIONED

DIISTRMUUIiO STAAMPN

82 01 1201

DATE RECEED IN DTIC

r"OTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUM ENT PROCSING SHEERDTIC TB 0 70A

UNANOUNCD 0 LECJ
n I I I I-- 1 II O

l

..N 2 5: O W " 7 -

RADC-TR41-358, Vol VI1 (of seven)
In%"ri Repet
December 1961

ADA INTEGRATED ENVIRONMENT I
OCOMPUTER PROGRAM DEVELOPMENT:

SPECIFICATION

Intirmetrics, Inc.

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION4 UNUIMITIED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Basep New York 13441

This document was produced under Contract F30602-80-C-0291 for the
Rome Air Development Center. Mr. Don Roberts is the COTR for the Air Force.
Dr. Fred H. Martin is Project Manager for Intermetrics.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-358, Volume VII (of seven) has been reviewed and is approved
for publication.

APPROVED:

DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

UNCLASSIFIED
ECUMITY CLAS SFICATIOU OF TWIt PASS M(U M 0..lI~eee_

UZAD WEBTMCNOUREPORT DOCUMENTATIO PAGE SzOnrg COMPLE GrSo
RADC-TR-81-358, Vol VII (of sevei)

4. TIL (and $011 T Fp 0opOT 6 1 0COvRDTT~s€--" ,...jInteriK Report

ADA INTEGRATED ENVIRONMENT I COMPUTER 15 Sep 80 - 15 Mar 81
PROGRAM DEVELOPMENT SPECIFICATION S. pGgpon..e oV& Ror MuMoER

N/A
7. AUTMROS(.J . CONTRACT OR GRANT U"UEw-

F30602-80-C-0291

9. PeRFORIMINO OROANIZATIOM NANS AND ADDRUS I0. P--GAM TLEME-T PROJICT. TASK

Intermetrics, Inc. A2 20 12 MU&

733 Concord Avenue 62204F/33126F
Cambridge MA 02138 55811908

St. CONTROLLING OFFICI MANS AND ADOREUS IL 0PORT OATS
December 1981

Rome Air Development Center (COES) IL NIMERS OAP A
Griffiss AFB NY 13441 20
IS. MONITORING A0ENCY MAM 4 ADORES(U adI M i 01*..) I& 9ECuMITY CLASS. (.1 SOu

UNCLASSIFIED

I. DISTRIBUTION STATENINT (ei Si. R.WOIJ

Approved for public release; distribution unlimited.

17. mUTmIGUTION STATEMENT (ofMe aeetme wed , ineek N dI femot - 0pmel)

Same

is. SJPPLEUIMV"ARY MOTES

RADC Project Engineer: Donald F. Roberts (COES)

Subcontractor is Massachusetts Computer Assoc.

1S. KEy WON" (01016m101e - f"wea e11 It aeeoei a" 8~1 Ft ea AImIDO)
Ada MAPSE AlE
Compiler Kernel Integrated environment
Database Debugger Editor
KAPSE APSE

JIL AMSTRAC? (CON01106 O POO eewfe eM IiOO" in INIea 8~t ed F i80 80068"

The Ada Integrated Environment (AIE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an All includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programing Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

00 1 o 1u 1473 toDnon oF 1 ov GP oosws e e UNCLASSIFIED

SECURITY CLAS0I0ICATION OP TNIS PASS fuce BOOM

7 77....

UNCLASSIFIED

sacutv c6AMPICATO of "0 PA@EtMb" booUau

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

UNCLASSIFIED

96UOUTY CLAUSPCAT10S OF V-' PA0lfMhfl DOaG SOq~d

7-

TABLE OF CONTENTS i

PAGE

1.0 SCOPE 1

1.1 Identification i
1.2 Functional Summary 1

2.0 APPLICABLE DOCUMENTS 3

2.1 Government Documents 3
2.2 Non-Government Documents 3

3.0 REQUIREMENTS 4

3.1 Program Definition 4

3.1.1 Source Management and the Text Editor 4
3.1.2 Interfaces 5

3.2 Detailed Functional Requirements 6

3.2.1 Invocation 6
3.2.2 The Edit Buffer 6
3.2.3 Basic Editing Modes - Command and Text 7

Input

3.2.3.1 Command Structure 7
3.2.3.2 Command Addressing Primitives 7
3.2.3.3 Combining Addressing Primitives 8
3.2.3.4 Basic Command Descriptions 8
3.2.3.5 Substitute and Replacement 14

Patterns
3.2.3.6 Option Descriptions 15

3.2.4 Full Screen Mode 17

3.2.4.1 Movement within the Buffer 17
3.2.4.2 Corrections 19
3.2.4.3 Line Operations 19
3.2.4.4 Undo 19
3.2.4.5 Higher Level Text Objects 20

INTERMETRICS INCORPORATED * 73 CONCORD AVENUE . CAMBRIDGE, M .SACHETrS 02138 * (017) 061 1 40

1.0 SCOPE

1.1 Identification

This specification establishes the requirements for the MAPSE
Text Editor. The Text Editor provides basic editing facilities
suitable for editing general text such as program source or program
documentation.

1.2 Functional Summary

The design of the MAPSE editor is largely based on the highly
popular ex or vi editor developed at the University of California,
Berkeley, undge various corporate and government grants. The
system, which runs under UNIX, has been documented by William Joy of
the Department of Electrical Engineering and Computer Science at
UCB, and is in general distribution. This model was chosen due to
its wide range of applicability and its wide acceptance in the user
community. It is felt that an editor, being one of the most highly
user-interactive parts of the MAPSE, should be based on a design
which has been shown to be successfil.

The MAPSE Text Editor is the basic tool for the creation and
modification of textual material. The edited material resides in
the MAPSE database and is created or modified interactively through
the editor. The editor operates on a copy of the object in its
"edit buffer". The original object itself is not modified until the
user so requests. The editor may be operated in various modes as
appropriate to the sophistication of the user and the
characteristics of the terminal device:

- Command commands are entered when a '>' prompt is
Mode: present and are executed each time a complete

line is entered (terminated by a carriage
return or "new line"). Sufficient commands are
available to allow flexible editing of a file
from even hardcopy, low-speed terminals.
Command functions include: find, alter,
insert, delete, input, output, move, copy and
substitute.

- Text the editor gathers input, line by line, and
Input Mode: places it in the edited file. No prompting is

done and the user must leave Text Input Mode
explicitly. This mode is the basic method for
adding lines to a file.

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MAIBACHUSETT 02136 (017) 66-140

.... |

I m m O • -I - _ 1 (.. . . -) I] I I l I 77- . . .

L IpLiI -" n

- Full a superset of Command mode. On appropriate
Screen Mode: CRT terminals, the CRT screen is made a

"window" into the file being edited; a
contiguous block of the file's text is
displayed. The terminal's cursor is used to
"move around" in the text and cursor commands
may be given (with effects such as "delete the
character at the cursor location" or "move
cursor forward one word"). All of the "line
commands" of the basic Command mode are
available: the user may issue these commands
on the "command line" of the display and see
the effects reflected in the block of text
shown in the terminals full display.

The editor begins operation in the simpler Command mode. The user
may invoke the more sophisticated features as needed.

In addition to standard editing (text manipulation) features,
the editor provides a few simple additional capabilities, which
enhance its utility in the KAPSE environment. These include:

- File/object handling. The ability to write all or part of
the object under edit into another named object, plus the
ability to read a named object into the editor's edit buffer
(e.g., to include one file in another).

- KAPSE or user program invocation. The ability to "escape" to
the KAPSE or user program from within the editor and,
optionally, pass portions of the edited object to the program
as input. Correspondingly, the output of such an invoked
program may be read into the edit buffer. This allows, for
instance (presuming the existence of a sorting program), the
invocation of a sort program with the buffer contents as
input and the replacement of the buffer contents with the
sort program's output.

- User controlled options. A set of options that parameterize
some of the editor's functions is provided. Generally, these
are used to set default counts or modes for various commands.
Examples are: (1) setting tabstops to be every "n"
positions; or (2) setting a "wrap right margin" mode in which
the editor automatically senses the approach of the right
margin during text input and breaks the input line at a blank
near the margin. This is useful for documentation input when
the typist is more effective if margins are "automatic".
(This mode is similar to those provided on many stand-alone
word processors.)

- Edit Scripts. The ability to use a "canned" set of edit
commands out of a file. Commonly used edit sequences can be
saved and applied during later edit sessions.

2

INTERMETRICS INCORPORATED 9 732 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 0212 (017) 661-1340

.................................. IW-

2.0 APPLICABLE DOCUMENTS

Please note that the bracketed number preceding the document
identification is used for reference purposes within the text of
this document.

2.1 Government Documents

[G-1] Reference Manual for the Ada Programming Language,
proposed stan-- d5-ment, July 1980.

2.2 Non-Government Documents

[I-1] System Specification for Ada Integrated Environment,
Type A, Intermetrics, Inc., March 1981, IR-676.

Computer Program Development Specifications for Ada Integrated
Environment (Type 5):

[1-21 Ada Compiler Phases, IR-677.

[1-31 KAPSE/Database, IR-678.

[1-4] MAPSE Command Processor, IR-679.

[1-5] MAPSE Generation and Support, IR-680.

[1-6] Program Integration Facilities, IR-681.

[1-71 MAPSE Debugging Facilities, IR-682.

[1-8] Technical Report (INTERIM), IR-684.

3

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MAUSACHUSETI'S 02136 • (617) 061-1640

. 14 0

3.0 REQUIREMENTS

3.1 Program Definition

The MAPSE Text Editor provides a framework within which
different kinds of structured and unstructured text may be edited.
It must interface with the file system and the general KAPSE
environment on the one hand and the user (through the user's
terminal) on the other.

A user invokes the Editor, specifying a database object that is
to be manipulated. The editor creates a copy of the object in its
edit buffer and interprets user commands to effect changes to the
buffer's contents. The buffer is copied into the database (into its
original object or another) at user request. The editor can be used
to create an object if it does not exist. The detailed functional
requirements of the MAPSE text editor are dictated primarily by the
command language which it supports. The description of that command
language is found in Section 3.2.

3.1.1 Source Management and the Text Editor

The MAPSE Text Editor is the primary means for creating and
editing source text, both programs and documentation. As such, the
Editor provides an important user interface to the KAPSE facilities
used for source management.

Each text object in the KAPSE database is a component of a
composite object, and has a set of distinguishing attributes which
differentiate it from all other components of this composite object.
To edit a particular text object, the user specifies an access path
going through some window with a capacity that provides appropriate
access rights to alT orpart of the composite object enclosing it
[1-31. The access path identifies the window and then specifies the
distinguishing attributes of the component, in the general form:

window name.dist att l.dist att2.. dist attN

For example:

WORKSPACE.SHUTTLE.INITIALIZATION.PKGSPEC

The editor can be used to create a totally new text object, or
to edit an existing text object. In both cases, the editor
automatically takes advantage of KAPSE facilities for source
archiving, synchronization, and access control.

When creating a new text object, the editor uses the KAPSE
history facilities to establish it as the beginning of a new source
archive. Future edits to the object will all be remembered in this
source archive, allowing for the possibility of recreating past
revisions and preventing catastrophic loss.

4

INTENOF 106,4 ,CORPORATED 732 CONCORD AVENUE * CAMBRIDGE. MASSACHLUTTI 02139 (017) 001-1040

F - - -- - - - - -- ~ _

When editing an existing object, the user may specify either
that the revised contents should replace the original contents of
the object, or that the revised contents should be stored under a
new name (with some new value for a distinguishing attribute). In
either case, the editor specifies (with the history attribute of the
revision) that it is derived from the original object and is a
member of the same source archive.

Synchronization is effected by opening the output object,
whether it has the same or a new name, with reservation for
EXCLUSIVE WRITE. By so doing, the editor ensures that no other user
can simulEaneously create or edit this object.

The KAPSE access control verifies that the user's window(s)
provide the necessary access rights -- SELECT COMPONENT and READ of
the input object, and CREATE-COMPONENT (if -new) and WRITE of the
output object.

As a final aid to effective source management, the editor
allows the user to record for posterity the purpose of the editing
session. The editor saves the user's declared purpose as the value
of a non-distinguishing attribute labeled PURPOSE FOR REVISION. The
editor, of course, cannot force the user ti gTve meaningful
comments, but by making the process painless and automatic, it gives
the conscientious user a medium to record information which
otherwise might be lost or forgotten.

As a result of this standard editing procedure, the user and
his/her manager are provided with a useful record of the development
of a piece of text, as well as being protected against improper or

* mistaken modification to important source documents.

3.1.2 Interfaces

The editor determines device characteristics from the KAPSE via
GET INPUT INFO and GET OUTPUT INFOR. Within the limits of the
device, the KAPSE traislates-the standard set of device control
character sequences into the specific codes appropriate to the
particular terminal. The editor uses SET COL and SET LINE of the
extended TEXT 10 package [1-3, 3.2.8.4]- to control cursor or
print-head movement.

The editor is able to deal with a variety of devices
(line-at-a-time hardcopy through full function "smart" CRTs) by
knowing specific terminal characteristics. These characteristics
include control (input and output) sequences for common functions

r: such as:

- clear screen

- erase to end-of-line

- hardware character and line insert/delete

5

INTERMETRICS INCORPORATED* 733 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138. (17) 6.1840

-~ ~ :--

The editor uses standard KAPSE functions for manipulation of
database objects. Also, the KAPSE is used for invoking user or
system programs under the editor and passing/receiving data to/from
those programs. The editor operates as a standard Ada program in
the KAPSE environment.

3.2 Detailed Functional Requirements

Due to the highly interactive nature of a text editor, the
traditional breakdown of requirements into Inputs, Processing, and
Outputs has been combined below under the general topic of the
command language and its effects on the edited object and the
editor's environment.

3.2.1 invocation

The editor is invoked as a standard Ada program, specifying the
object to be edited as an argum- nt as in:

:EDIT X

The argument (X) is prepared for editing and becomes the current
file name.

An optional second argument may be supplied, which specifies
the location from which the editor will initially read commands.
This second argument is used to operate the editor in a "batch" mode
as in:

EDIT X, SCRIPT

if the optional second argument is omitted, the default command
source is the user's terminal and a conventional interactive edit
session proceeds.

3.2.2 The Edit Buffer

In order to perform its tasks, the editor sets aside a
temporary work space, called a "buffer", separate from the user's
permanent database object. Before starting to work on an existing
object, the editor makes a copy of it in the buffer, leaving the
original untouched. All editing changes are made to the buffer
copy, which must be written back into the database in order to

*update the old version or create a new object. The buffer
disappears at the end of the editing session. If the user attempts
to end the editing session prior to saving a changed buffer, the
editor requests verification from the user.

A4

6

INTERMETRIC6 INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1940

3.2.3 Basic Editing Modes -Command and Text Input

Command and Text Input modes are available on all terminals.
They are line-oriented and are entered a line at a time in response
to a prompt.

The text in the edit buffer is considered to be unique lines,
each line identifiable by its location in the buffer; i.e., its
count, starting at 1. The count always reflects the current buffer
contents. This means that addition or deletion of lines may affect
the number (count) of subsequent lines. The line number does not
physically exist in the edited text; it is merely an index used by
the editor. (A submode of the editor can be used to cause the line
numbers to be displayed whenever a line is displayed.)

3.2.3.1 Command Structure

Most commands are English words. The first character (or two)
are usually acceptable abbreviations. (The ambiguity of
abbreviations is resolved in favor of the more commonly used
commands.) For example, to delete the current line the user would
type: delete. To delete the eighth line of the buffer, Bdelete (or
8 d) i s iT

Most commands accept prefix addresses, specifying the lines in
the file upon which they are t-o have an effect. The forms of those
addresses are discussed below. A number of commands also may take a
trailing count, specifying the number of lines to be involved. If a
command takes any other information or parameters, this information
is always given after the command name. Examples: 10d deletes line
10 while l0d1O deletes 10 lines starting at line 10.

3.2.3.2 Command Addressing Primitives

The following notation is used to address specific lines in the
edit buffer. These address primitives are combined with command
names to direct execution of the command.

Primitive Function/Meaning

The current line. Most commands leave the
current line as the last line which they affect.
The default address for most commands is the
current line.

n The nth line in the editor's buffer.

$ The last line in the buffer.

7

INTERMETRICB INCORPORATED @ 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

Primitive Function/Meaning

+n An offset relative to the current buffer
-n line.

/pattern/ Scan forward or backward, respectively, for a
?pattern? line containing "pattern", a sequence of

characters (including "wild cards") which are to

be matched.

"Marked" lines. Any line may be marked (the
Ix mark command) with a letter from a to z. A

marked line is addressed by 'x when x is the
marking letter. The form '' is a special case
which is always maintained by the editor to
address the previous current line.

3.2.3.3 Combining Addressing Primitives

Addresses to commands consist of a series of two or more
addressing primitives separated by ', or ';'. Such addresses are
evaluated left to right. When addresses are separated by ';', the
current line (1.') is set to the value of the addressing expression
which precedes the ';', before the next address is interpreted. If
a command takes two addresses, the first addressed line must precede
the second in the buffer.

Examples of line addresses:

The current line

+1 The line after the current line

5 Line 5

5,10 Lines 5 through 10

.-l,+6 Lines 4 through 11 if . is 5

$-10;.+3 Tenth to last line through seventh to last line
(same as $-10,$-7)

3.2.3.4 Basic Command Descriptions

The following form is a prototype for all line commands:

<address> command <parameters> <count> <flags>

All parts are optionall the degenerate case (a carriage return or
new line with nothing typed before it) is the empty command, which
is interpreted as a special case and causes the next (.+1) line in
the buffer to be displayed. 8

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MAIIACHUSETTS 0239 (617) 01-1040

00-

Flags may appear optionally after commands. The flags allowed
are 1#11 'p', and '1'. If an optional flag is used, the command
abbreviated by these characters (number, print, or list) is executed
after the command completes.

In the following command descriptions, the default addresses
are shown in parentheses, which are not, however, part of the
command.

Append

(.)append abbr: a
<text>

Places editor into Text Input mode. Lines are
read from the terminal and placed after the
addressed line. A single '.' on an input line
terminates Text Input mode and returns the
editor to Command mode.

Example:

$append adds line to end of buffer
Oappend adds lines to beginning of

buffer.

Change

(.,.)change<count> abbr: c
<text>

Replaces the specified lines with the input
<text>. Input is terminated by a single '.'.
If no <text> is input, the effect is as a
delete.

(.,.)copy<addr> abbr: co

A copy of the specified lines is placed after
<addr>.

Example:

5,10copyO puts a copy of line 5 through 10 at
the beginning of the buffer.

9

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MAESACUEU 02139 (617) -1Si0

Delete

(.,.)delete<buffer><count>

abbr: d

Removes the specified lines from the edit buffer.
Optionally, a "named buffer" may be specified, in
which case the deleted lines are saved into an
internal editor buffer (there are a-z of them).
Internal named buffers may be further manipulated
by the put command and the yank command.

File

file<newname> abbr: f

Prints the current file name and number of lines
in the buffer. If <newname> is specified, the
current file name is replaced with <newname>.

Full Screen

(.)fullscreen<count>
abbr: fu

- Enters full screen mode on an appropriate
terminal. The addressed line appears at the top
of the full screen window into the edit buffer.
The <count>, if present specifies an initial
window size in lines.

Global

(l,$)global /pattern/<cmds>
abbr: g

First marks each line, among those specified,
which matches the given pattern. Then the given
command list is executed with 1.1 initially set
to each marked line. The global command itself
may not appear in <cmds>.

Insert

(.)insert abbr: i
<text>

Places the given text before the specified line.
This command differs from append only in the
placement of the text.

10

IPTmRMTICS INcORPORATED M 3 CONOR AVENE CAMRIOGU. MAKAMCHMMT 0213 * (4171 661M0

Join

(.,.+l)join<count> abbr: j

Places the text from a specified range of lines
together on one line.

List

(.,.)list<count> abbr: 1

Prints the specified lines in an unambiguous way:
a few non-printing characters (e.g., tab and
backspace) are represented by mnemonic
overstrikes. All other non-printing characters
are printed in octal.

Mark

(.)mark<x>

Marks the specified line as x (a single lower
case letter). The addressing form Ix then
addresses this line.

Move 1
(.,.)move<addr> abbr: m

The move command repositions the specified lines
to be after <addr>.

Number

(.,.)number<count> abbr: nu or #
Prints each specified line preceded by its buffer
line number.

Print

(.,.)<count> abbr: p

Prints the specified lines.

11

INTEMETRICS INCORPORATED e 733 CONCORD AVENUE CAMBRIDGE, MASACHUSETTS 0213S (017) 961-16

61ol"

Put

(.)put<buffer> abbr: pu

Puts back previously deleted or yanked lines.
Normally used with delete to effect movement of
lines or with yank to effect duplication of
lines. If no <buffer> is specified, then the
last deleted or yanked text is restored. By
using a named buffer, text may be restored that
was saved in that buffer at any previous time in
the edit session.

Quit

quit abbr: q

Causes the editor to terminate. No automatic
write of the edit buffer to a database object is
performed. However, a warning message is issued
if the file has changed since the last write
command and the editor does not quit. Anot-her
quit command immediately after the warning
message will cause the editor to discard its
buffer and terminate.

Read

(.)read<file> abbr: r

Places a copy of the text of the given file in
the editing buffer after the specified line. If
no file name is present, the current file name is
used.

(.)readl<command> abbr: r

Invokes the command processor to process the
specified command. The standard output of the
command is read into the buffer after the
specified line.

Set

set<parameter>

With no arguments, prints those options whose
values have been changed from their defaultsi
with <parameter> 'all' it prints all of the
option values. Legal values for <parameter> are
given in Section 3.2.2.6.

12

INTIRMETRIcM INCORPORATED 733 CONCRD AVENUE • CAMBRIDGE. MISACI4USh1m 0238 (017) U1-140

Source

source<file> abbr: so

Reads and executes commands from the specified
file. Source commands may be nested.

Substitute

(.,.)substitute /<pattern>/<replacement>/<options><count>
abbr: s

On each specified line, the first instance of
<pattern> is replaced by replacement pattern
<replacement>. If the global indicator option
character 'g' appears, t en all instances are
substituted. If the confirm indication character
'c' appears, then before each substitution, the
line to be substituted is typed with the string
to be substituted marked with 'I' characters. By
typing a 'y' one can cause the substitution to be
performed as shown. Any other input causes no A.

change to take place.

Undo

undo abbr: u

Reverses the changes made in the buffer by the
last buffer editing command.

Write

(l,$)write<file> abbr: w

Write the edit buffer back to <file>. If <file>
is omitted, the text goes to the current file
(usually the originally edited file).

(l,$)writel<command>
abbr: w

Writes the specified lines as standard input to
<command>.

Yank

(.,.)yank<buffer><count>
abbr: ya

Places the specified lines in the named buffer
for later retrieval via put.

13

INTERMUTRICS INCONORATED M CONCORD AVENUE • CAMBRIDGE. MASSACHUM' 02138 (017) 66-140

I .

Escape to Command Processor

I<command>
The remainder of the line after the 'I'
character is sent to the command processor for
execution.

(addr,addr) <command>
Takes the specified address range and supplies it
as standard input to <command>; the resulting
standard output then replaces the input lines.

Display Line Number

Prints the line number of the addressed line.

Display Line

(.+l)
An address alone causes the addressed line to be
printed. A blank line (no address) prints the
next line in the file.

3.2.3.5 Substitute and Replacement Patterns

(a) Pattern Expressions. A pattern expression specifies a set of
strings of characters. A member of this set of strings is set to be
matched by the pattern expression.

* (b) Basic Pattern Expression Summary. The following basic
constructs are used to construct patern expressions:

char An ordinary character matches itself. The
characters '' at the beginning of a line, ''
as any character other than the first, 8'., °°,
'[' and ''' are not ordinary characters and must
be escaped (preceded) by '/' to be treated as
such.

At the beginning of a pattern forces the match
to succeed only at the beginning of a line.

*At the end of a pattern expression forces the
match to succeed only at the end of a line.

14

INTEAMETRICS INCORPORATED 733 CONCORD AVENUE CAMBRIDGE, MMIACI4USSr1T 0212 (617 Wi-1840

Matches any single character except the new line
character.

[<string>] Matches any (single) character in the class
defined by <string>. Most characters in <string>
define themselves. A pair of characters
separated by '- in <string> defines the set of
characters collating between the specified lower
and upper bounds. (E.g., '[a-z]' as a pattern
expression matches any (single) lower case letter
if the collating sequence is ASCII.) If the
first character of <string> is '^, then the
construct matches those characters not in the
defined set. To place any of the cha-c-ters '^',
4'[, or '-' in <ptring>, you must escape them
-ith a preceding 'V.

(c) Combinici ittern Expression Primitives. The concatenation of
two pattern matcns the ttefmosand then longest string
which can 'be dvidt' with the first piece matching the first pattern
expression and tho second piece matching the second. Any of the
(single character matching) pattern expressions mentioned above may
be followed 3y the character '*' to form a pattern expression which
matches any number of adjacent occurrences (including 0) of
characters matched by the pattern expression it follows.

The character '' may be in a pattern expression, and matchesthe text which defined the replacement part of the last substitute
command.

(d) Substitute Replacement Patterns. The basic metacharacters for

the replacement pattern are '&' and '': Each instance of &' is
replaced by the characters which the pattern expression matched.
The metacharacter stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

3.2.3.6 Option Descriptions

The options described below are modified by the set command.

(a) Ada. Default is noAda. When on, changes the definition of a
"wordw'-Tn full screen mode (e.g., for use in 'dw', 'cw', etc.) to be
that of an Ada lexical unit as defined in Chapter 2 of the Ada LRM.
In addition, the definition of a "paragraph" in full screen mode is
redefined to be delimited by matching pairs of reserved words (e.g.,
begin-end, loop-end loop, if-end if, etc.).

15

INURERICI INCONORATID M 2 OCOA AVNUE C~tAFIDGI. MAACHETTS 02123 9 g171 U.ISOO

- j . p. 3! . 72 , .. . ,,....h ., - .

(b) Autoindent (ai). Default is noal. Autoindent can be used to
ease the preparation of structured program text. At the beginning
of each append, change, or insert command or when a new line is
opened or created by an append, change, insert, or substitute
operation within full screen mode, the editor looks at the line
being appended (after the first line changed or the line inserted
before) and calculates the amount of white space at the start of the
line. It then aligns the cursor at the level of indentation so
determined.

If the user then types lines of text in, they will continue to
be justified at the displayed indenting level. If more white space
is typed at the beginning of a line, the following line will start
aligned with the first non-white character of the previous line. To
back the cursor up to the preceding tab stop one can hit ^D.

Specially processed in this mode is a line with no characters
added to it, which turns into a completely blank line (the white
space provided for the autoindent is discarded).

(c) List. Default is nolist. With list, all printed lines will be
displaye- unambiguously as in the list command.

(d) Number(nu). Default is nonumber. Causes all output lines to
be printed with their line numbers. In addition, each input line
will be prompted for by supplying the line number it will have.

(e) P . Default is prompt. Command mode input is prompted
with a P.

(f) TabstoR (ts). Default is ts-8. The editor expands tabs in the
input-file-to-Be-on tabstop boundaries for the purposes of display.

(g) Wrapscap (_s). Default is ws. Wrapscap searches using the
pattern expressions in addressing will wrap around past the end of
the file.

(h) Wrapmargin (wm). Default is wm-0. Wrapmargin defines a margin
for automatic wrapover of text during input in full screen mode.

16

INTERMETRICS INOPOflATIED * 733 CONCORD AVENUE * CAMBRIDGE, MASBACHUSETTS 02128 (617)M1-IN0

4111 41

3.2.4 Full Screen Mode

On an appropriate terminal, the user may elect to operate the
editor in full screen mode via the full screen command. In this
mode the .CRT screen becomes a window into the editors buffer. All
of the non-fullscreen commands are still available. However, when
the cursor is moved around the CRT screen an entire new set of
"keystroke" commands become available. These commands cause
movement or changes in the visual image displayed on the screen. It
is always possible to enter non-fullscreen commands by using the '>'
keystroke command, which places the cursor at the bottom line of the
display and then accepts a non-fullscreen command.

Most of the full screen keystroke commands move tt.e cursor
around in the edit buffer. There are commands to move the cursor
forward and backward in units of words, sentences and paragraphs. A
small set of operators, like 'd' for delete and 'c' for change, are
combined with the motion commands to perform operations such as
delete word or delete paragraph, in a simple and natural way. This
regularity and the mnemonic assignment of commands to keys make the
editor command set easier to remember and use.

The various types of movement and modification commands are
grouped together and described below. Note the use of the notation
'^n' for the control-n character.

3.2.4.1 Movement within the Buffer

(a) Scrolling and Paging

AD Scroll Down

Au Scroll Up

^F Forward a page

AB Backward a page

(b) Searching, goto

/<text> position cursor at the first occurrence of this
string on a line after the comment line.

?<text> same as /<text> except searches back in buffer.

n go to next line with an occurrance of the
previously mentioned <text>.

G Go to. If preceded by a number (e.g., 1G) goes
to the first line of the buffer. A 'G' with no
prefixed number goes to the end of the buffer.

17

INTERMETRICS INCORPORATED e 722 CONCORD AVENUE @ CAMURIDGE. MAACHIETTS 0213 o (617) 661-1S4o

olI 0 1

(c) Moving Around the Screen

+ advance to next line (return key has some function),
first non-white character.

- move to preceeding line, first non-white character.

H move to top line (Home) of current screen, first
non-white character.

M move to Middle of current screen, first non-white
character.

L move to Last line of screen, first non-white

character.

-N move to next line maintaining column position.

P move to previous line maintaining column position.

(d) Moving Within a Line

w advance cursor to next word.

b backup cursor a word at a time.

e advance to end of current word.

<space> move right one character.

<backspace> move left one character.

(e) Inserting

i enters insert mode. Everything typed until an ESC
(Escape key) is typed is inserted to the left of the
cursor.

a enters insert mode to the right of the cursor
(appends) until ESC is typed.

o open new lines after the current line.

0 open new lines before the current line.

18

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETI 02138 (017) 01.8940

J *W=

3.2.4.2 Corrections

x delete (x-out) the character under the cursor.

r replace the character at the cursor position with the
next character typed.

s substitute characters (terminated by ESC) for the
character at the cursor position.

Note: the s and x commands may be preceded by a numeric count to
indicate the number of characters to be involved.

d delete operator. It is followed by a "type"

indication as in 'dw' to delete a word or db to delete
the character preceeding the cursor (delete
backwards).

c change operator - similar to d but accepts text up to
ESC to replace indicated context. (E.g., CW changes
the next word).

repeats the last changing command.

3.2.4.3 Line Operations

dd deletes the current line.

cc change a whole line.

Note that dd and cc may be preceeded by counts.

3.2.4.4 Undo

u reverses the last change mode.

U restores current line to its state before last changes
were made to it.

19

INTERMETRICI INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (6171 661M140

-- ~ iiIIII. 5-

3.2.4.5 Higher Level Text Objects

move forward one sentence.

backward sentence.

} forward paragraph.

} backward paragraph.

xy yank copy of text object into buffer 'x' (may be
a-z).

xp put text from buffer x after cursor.

Note: A paragraph begins after each empty line unless the 'Ada'
option is set. See Section 3.2.3.6.

i"

20

INTERMETRICS INCORPORATED , 733 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 1617) 861.1840
§

I

-kill

MISSION
* Of

Rome Air Development Center
TAI)C ptan6 and excete&)te~ea~ch, devetopment, te~t and
Aetected acquizition pLogam in auppo4tt o6 Command, Contut
Conmanication6 and Inte~igence (C31) activitue6. TechnLcaX
and enqgnee~inq 6uppot~t within eAiea. oj teihnicat competence
iA p'tovided to ESP Ptogqkam O-6iceA (P0,6) and othe't ESO
etement6. The pA.Lncipat technicot mi~sion ateas& aAe
commncation4, etectornagnet-ic guidance and cont'wL, a6u4-
veiUance o6 g4ound and aeAozpace object6, intettigence data
cottection and hand~ng, indo~'mation 6temn technotoqy,
iono,6phe~&.c p'topagation, sotid .6tate 6cienceA, micAowakve
phqdics and etecttonic 4etabZL-Lty, ma.ntainabitity and
compatibiltt.

-" '-i .T~ -A

D- AT

IA UE

